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Abstract
We construct new families of elliptic solutions of the restricted Toda chain.
The main tool is a special (so-called Stieltjes) ansatz for the moments of
corresponding orthogonal polynomials. We show that the moments thus
obtained are related to three types of Lamé polynomials. The corresponding
orthogonal polynomials can be considered as a generalization of the Stieltjes–
Carlitz elliptic polynomials.

PACS numbers: 02.30.Ik, 02.30.Gp
Mathematics Subject Classification: 33E05, 33E10, 37K10

1. Introduction

The Toda chain [21] is an example of a completely integrable classical many-particle system
with highly regular behavior. Initially this model was proposed by Toda from physical
considerations (as an example of a many-particle system without quasi-stochastization).
However, it was soon recognized that this model has many applications in different branches
of physics and mathematics.

In mathematical physics, the Toda chain is usually associated with tri-diagonal (Jacobi)
matrices and corresponding orthogonal polynomials Pn(x; t) depending on an additional (time)
parameter [3, 18, 21].

In particular, the Toda chain provides a possibility to construct explicit families of
orthogonal polynomials and to study their properties.

In [17], a method was proposed to construct explicit solutions of the restricted Toda chain
starting from a special polynomial ansatz for the moments of orthogonal polynomials.

In this paper, we generalize this ansatz and obtain new classes of explicit solutions of the
Toda chain which are related on the one hand with the Lamé polynomials and on the other
hand with the Stieltjes–Carlitz elliptic orthogonal polynomials.
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http://dx.doi.org/10.1088/1751-8113/42/45/454024
http://stacks.iop.org/JPhysA/42/454024


J. Phys. A: Math. Theor. 42 (2009) 454024 L Vinet and A Zhedanov

We recall some basic definitions and results concerning the relations between Toda chain
and orthogonal polynomials [3, 17].

We consider the Toda chain equations in the form [21]

u̇n = un(bn − bn−1), ḃn = un+1 − un (1.1)

with restriction

u0 = 0, (1.2)

where the dot indicates differentiation with respect to t. In what follows we will call
equations (1.1) with restriction (1.2) the restricted Toda chain (TC) equations.

Let Pn(x; t) be orthogonal polynomials satisfying the three-term recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x) (1.3)

with initial conditions

P0 = 1, P1(x) = x − b0. (1.4)

We will assume that un �= 0, n = 1, 2, . . . . By the Favard theorem [5], there exists a
nondegenerate linear functional σ such that the polynomials Pn(x) are orthogonal with respect
to it:

σ(Pn(x)Pm(x)) = hnδnm, (1.5)

where hn are normalization constants. The linear functional σ can be defined through its
moments

cn = σ(xn), n = 0, 1, . . . . (1.6)

It is usually assumed that c0 = 1 (standard normalization condition), but we will not assume
this condition in the following, i.e. it is supposed that c0 is an arbitrary nonzero parameter.

Introduce the Hankel determinants

Dn = det(ci+j )i,j=0,...,n−1, D0 = 1, D1 = c0. (1.7)

Then the polynomials Pn(x) can be uniquely represented as [5]

Pn(x) = 1

Dn

∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

· · · · · · · · · · · ·
cn−1 cn · · · c2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
. (1.8)

The normalization constants are expressed as

hn = Dn+1

Dn

, h0 = D1 = c0. (1.9)

While the recurrence coefficients un satisfy the relation

un = hn

hn−1
= Dn−1Dn+1

D2
n

. (1.10)

Thus we have

hn = c0u1u2 · · · un. (1.11)

Assume now that the polynomials Pn(x; t) depend on a real parameter t through their
recurrence coefficients un(t), bn(t). Then the restricted Toda chain equations (RTE) are
equivalent to the condition

Ṗn(x; t) = −unPn−1(x; t). (1.12)
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It is possible to choose the initial moment c0(t) (normalization) such that the RTE are
equivalent to the condition

ċn = cn+1, (1.13)

i.e.

cn(t) = dnc0(t)

dtn
. (1.14)

In this case the Hankel determinants Dn = Dn(t) have the form

Dn = det
(
c
(i+k)
0

)
i,k=0,...,n−1, D0 = 1, D1 = c0, (1.15)

where c
(j)

0 means the j th derivative of c0(t) with respect to t.
Under this condition, the RTE are equivalent also to the equations

d2 log Dn

dt2
= Dn−1Dn+1

D2
n

, n = 1, 2, . . . . (1.16)

(Equations (1.16) are equivalent to the Hirota bilinear form [9] for the RTE.)
Note also that for the Hankel determinants of the form (1.15) we have two useful relations

bn = Ḋn+1

Dn+1
− Ḋn

Dn

(1.17)

and

ḣn = hnbn. (1.18)

In particular, for n = 0 we have from (1.18)

b0 = ċ0

c0
. (1.19)

Relation (1.19) allows us to restore c0(t) if the recurrence coefficient b0 = b0(t) is known
explicitly from Toda chain solutions (1.1).

2. Toda chain and Christoffel transform

Let bn(t), un(t) be a solution to the restricted Toda chain (1.1) corresponding to the zero
moment c0(t). Let Pn(x; t) be a set of monic orthogonal polynomials satisfying conditions
(1.3) and (1.12).

Consider the simplest Christoffel transform of the orthogonal polynomials Pn(x; t):

P̃ n(x; t) = Pn+1(x; t) − An(t)Pn(x; t)

x
, (2.1)

where

An(t) = Pn+1(0; t)

Pn(0; t)
.

It is well known (see, e.g. [17, 24]) that transformation (2.1) gives new orthogonal polynomials
P̃ n(x; t) which again satisfy Toda conditions (1.12) with recurrence coefficients

ũn = un

An

An−1
, b̃n = bn+1 + An+1 − An. (2.2)

The new coefficients ũn, b̃n satisfy the same restricted Toda chain equations (1.1). The new
zero moment function c̃0(t) will be c̃0(t) = ċ0(t) = c1(t), i.e. the Christoffel transform (2.1)
and (2.2) are equivalent to a simple shift cn(t) → cn+1(t) of all the moments. Such a shift is

3
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well known in theory of the so-called qd-algorithm (see, e.g. [4]) which was in fact discovered
by Stieltjes in [19].

If the polynomials Pn(x; t) are orthogonal on the interval [a, b] (either finite or infinite)
of the real line with some weight function w(x; t)∫ b

a

Pn(x; t)Pm(x; t)w(x; t) dx = hn(t)δnm, (2.3)

then the transformed polynomials P̃ n(x; t) will be orthogonal on the same interval [a, b] with
respect to the new weight function

w̃(x) = xw(x). (2.4)

In particular, assume that polynomials Pn(x; t) are orthogonal on a grid xs with concentrated
masses Ms :

∞∑
s=−∞

MsPn(xs; t)Pm(xs; t) = hn(t), δnm, (2.5)

then the transformed polynomials P̃n(x; t) will be orthogonal on the same grid with
concentrated masses M̃s = xsMs :

∞∑
s=−∞

xsMsP̃ n(xs; t)P̃ m(xs; t) = h̃n(t)δnm. (2.6)

Note that the reciprocal transformation (the so-called Geronimus transform [24]) is

Pn(x; t) = P̃ n(x; t) − Bn(t)P̃ n−1(x; t), (2.7)

where

Bn(t) = un(t)
Pn−1(0; t)

Pn(0; t)
.

In terms of the functions An(t), Bn(t), the Toda chain equations (1.1) can be presented in an
equivalent form as

Ȧn = An(Bn − Bn+1), Ḃn = Bn(An−1 − An), B0 = 0. (2.8)

Sometimes the form (2.8) is more convenient because the recurrence coefficients un, bn can
be expressed in terms of An(t), Bn(t) as

un(t) = Bn(t)An−1(t), bn(t) = −An(t) − Bn(t). (2.9)

We also need an explicit expression for the ‘shifted’ Hankel determinant

D̃n(t) =

∣∣∣∣∣∣∣∣
c1 c2 · · · cn

c2 c3 · · · cn+1

· · · · · · · · · · · ·
cn cn+1 · · · c2n−1

∣∣∣∣∣∣∣∣
.

From (1.8) it is seen that

D̃n = (−1)n+1DnPn(0; t). (2.10)

Formula (2.10) may be useful for calculating the shifted determinant D̃ if the polynomial
Pn(0; t) is known explicitly (e.g. expressible in terms of hypergeometric functions). In what
follows we shall use this observation.
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3. The Stieltjes polynomial ansatz and elliptic moments

In what follows we will assume that the moments cn(t) are defined through the zero moment
c0(t) by the condition cn(t) = dnc0(t)

dtn
which is equivalent to the restricted Toda chain

equations (1.12) for the corresponding orthogonal polynomials Pn(x; t). In [17] a separation
of variables ansatz was proposed

cn(t) = Tn(y(t))c0(t), n = 0, 1, . . . , (3.1)

where Tn(y(t)) is a polynomial of exact degree n in some (unknown) variable y(t) with
coefficients not depending on t. This leads to a system of orthogonal polynomials of the
Sheffer class: Meixner, Pollaczek, Krawtchouk, Laguerre, Hermite and Charlier. In turn,
these systems of orthogonal polynomials, considered from the Toda chain point of view, give
rise to combinatorial numbers such as Euler, Bell, etc.

In this paper we generalize this ansatz in the following way. Instead of (3.1) we demand
that

c2n(t) = Tn(y(t))c0(t), n = 0, 1, . . . , (3.2)

where, again, Tn(y) are polynomials of nth degree in y with coefficients not depending on t.
In other words, we only require the polynomial property (3.2) for the even moments c2n(t);
the odd moments c2n+1(t) in general, may not satisfy this property.

This problem was first considered by Stieltjes [19] who found several explicit examples
of the functions c0(t) satisfying condition (3.2). Stieltjes also demonstrated a remarkable
relation of this property with the possibility to construct explicitly the corresponding continued
fractions. It is reasonable therefore to call (3.2) the Stieltjes ansatz.

Our main goal will be

(i) to find all possible solutions c0(t), c1(t), . . . , cn(t), . . . corresponding to the Stieltjes
ansatz (3.2);

(ii) to find explicitly the corresponding Hankel determinants Dn(t) constructed from moments
cn(t) by (1.7);

(iii) to find explicitly the recurrence coefficients un(t), bn(t) which are solutions of the
restricted Toda chain (1.1) corresponding to the function c0(t);

(iv) to find explicitly the corresponding orthogonal polynomials Pn(x; t) and their
orthogonality measure.

We will see that apart from the well-known orthogonal polynomials (such as Meixner,
Krawtchouk, Hermite,. . .) there appear new types of orthogonal polynomials related to elliptic
functions. These orthogonal polynomials can be considered as a natural generalization of the
elliptic Stieltjes–Carlitz polynomials (for the latter see, e.g. [12, 13, 16]).

From (1.14) we get that the Stieltjes ansatz (3.2) is equivalent to

L2n{φ(y)} = Tn(y)φ(y), (3.3)

where φ(y) ≡ c0(t) and L is a first-order differential operator

Lf (y) = s(y)f ′(y) (3.4)

with

s(y) ≡ dy/dt (3.5)

(we consider here dy/dt as a function of y instead of t, this is possible because the function
y(t) is assumed to be invertible).

In turn, condition (3.3) is equivalent to

L2{Tn(y)φ(y)} = Tn+1(y)φ(y), n = 0, 1, . . . (3.6)

5



J. Phys. A: Math. Theor. 42 (2009) 454024 L Vinet and A Zhedanov

or, in explicit form

Tn+1(y) = A(y)T ′′
n (y) + B(y)T ′

n(y) + C(y)Tn(y), n = 0, 1, . . . (3.7)

where

A(y) = s2(y), B(y) = 2s2(y)ψ(y) + s(y)s ′(y),

C(y) = s2(y)(ψ ′(y) + ψ2(y)) + ψ(y)s(y)s ′(y)
(3.8)

and

ψ(y) ≡ φ′(y)/φ(y). (3.9)

We can eliminate s2(t) from the system (3.8) to get only two conditions

B(y) = 2A(y)ψ(y) + A′(y)/2 (3.10)

and

C(y) = A(y)(ψ ′(y) + ψ2(y)) + ψ(y)A′(y)/2. (3.11)

Clearly, by definition, T0 = 1. Hence from (3.7) we get that deg(C) � 1. Substituting
n = 1, 2 into (3.7) we obtain analogously that deg(B) � 2, deg(A) � 3.

Theorem 1. Assume that A,B,C are polynomials in y such that deg(A) � 3, deg(B) �
2, deg(C) � 1 and that for at least one of these polynomials the strict equality holds (say,
deg(A) = 3). Define T0 = 1 and construct a set of polynomials Tn(y) through the recurrence
relation (3.7). Then the resulting polynomials Tn(y) have exact degree n and the Stieltjes
ansatz (3.2) holds.

In what follows we will assume that A(y) is generic polynomial of the third degree:

A(y) = κ(y − e1)(y − e2)(y − e3) (3.12)

with some constant κ and distinct roots ei �= ej if i �= j .
From condition (3.10) we see that

ψ(y) = φ′/φ = B(y) − A′(y)/2

2A(y)
= q2(y)/A(y), (3.13)

where q2(y) = B(y)/2 − A′(y)/4 is a polynomial of degree �2. Thus we can write

ψ(y) = α1/(y − e1) + α2/(y − e2) + α3/(y − e3) (3.14)

with some constants αi . Substituting expression (3.14) for ψ(y) into (3.11) we see that
conditions (3.10) and (3.11) are compatible if and only if at least one of the following four
conditions holds:

(i) α1 = α2 = α3 = 1/2;
(ii) two of αi are zero, say α3 = α2 = 0 and the rest is α1 = 1/2;

(iii) one of αi is zero, say α1 = 0 and the rest are α2 = α3 = 1/2;
(iv) α1 = α2 = α3 = 0.

Case (iv) is degenerated: if all αi are zero, then ψ(y) = φ′/φ = 0 and φ(y) ≡ const. But
then from (3.3) it follows that Tn(y) ≡ 0, n = 1, 2, . . . which contradicts to our assumptions
that Tn(y) is a polynomial of exact degree n.

We thus can restrict ourselves with cases (i)–(iii).
Before detailing the investigation of these cases we first note that without loss of generality

we can assume that

e1 + e2 + e3 = 0. (3.15)

6
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Indeed, the variable y is defined up to an arbitrary affine transformation: substitution
y → αy + β does not change the main property (3.7). We thus can shift y by any constant.
If all roots ei are distinct (as assumed) then it is always possible to find such shift leading to
condition (3.15).

Now, assuming that (3.15) holds we easily find from (3.8)

dy/dt =
√

κ(y − e1)(y − e2)(y − e3). (3.16)

Again using the scaling freedom in the variable y, we can assume that κ = 4. We then
find the following solution to (3.16):

y(t) = ℘(t − t0; g2, g3), (3.17)

where t0 is an arbitrary parameter and ℘(t; g2, g3) is the standard elliptic Weierstrass function
with the invariants g3, g3. Recall [22] that the Weierstrass function ℘(t; g2, g3) is a solution
to the equation

(dy/dt)2 = 4y3 − g2y − g3 = 4(y − e1)(y − e2)(y − e3). (3.18)

In what follows we will assume t0 = 0 because the time variable t is defined up to an arbitrary
shift t → t + const.

Thus we derived that in the general situation (i.e. A(y) is a polynomial of the third degree
with simple roots), the function y(t) (i.e. the argument of polynomials Tn(y)) coincides with
the Weierstrass function ℘(t; g2, g3). The corresponding moments cn(t) are thus elliptic
functions of the argument t.

3.1. Case (i)

If α1 = α2 = α3 = 1/2 we can take

φ(y) = 2
√

(y − e1)(y − e2)(y − e3) = ℘ ′(t). (3.19)

From (3.8) we get for the polynomials B(y) and C(y)

B = 18y2 + 6(e1e2 + e1e3 + e2e3), C = 12y. (3.20)

It is seen that deg(B) = 2 and deg(C) = 1.
The polynomials Tn(y) = τny

n + σny
n−1 + O(yn−2) have the leading terms τn and σn.

From the explicit expressions (3.20) and from the recurrence relation (3.7) we find

τn = 22n(n + 1)!(3/2)n, σn = 0. (3.21)

3.2. Case (ii)

If α2 = α3 = 0 and α1 = 1/2, then we have from (3.13) (to within an unessential common
factor)

φ(y) = √
y − e1 =

√
℘(t) − e1. (3.22)

From (3.8) we get for the polynomials B(y) and C(y)

B = 10y2 + 4e1y + 2
(
3e2e3 − e2

1

)
, C = 2y + e1. (3.23)

It is seen that deg(B) = 2 and deg(C) = 1. For the two leading coefficients of the polynomials
Tn(y) we have

τn = 22nn!(1/2)n, σn = 22n−1n!(1/2)ne1, (3.24)

where (a)n = a(a + 1) · · · (a + n − 1) is the shifted factorial (Pochhammer symbol).
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3.3. Case (iii)

If α1 = 0 and α2 = α3 = 1/2 we have

φ(y) =
√

(y − e2)(y − e3). (3.25)

From (3.8) we get for polynomials B(y) and C(y)

B = 14y2 − 4e1y + 2
(
e3e2 − 3e2

1

)
, C = 6y − 3e1. (3.26)

It is seen that deg(B) = 2 and deg(C) = 1.
For the leading two coefficients of polynomials Tn(y) we have

τn = 22nn!(3/2)n, σn = −22n−1n!(3/2)ne1/e3. (3.27)

4. Relation with the Lamé equation and the Lamé polynomials

The polynomials Tn(y) we have obtained have a remarkable relation with the Lamé
polynomials in the theory of the Lamé equation [11, 22].

Return to relation (3.6) for the polynomials Tn(y) and introduce the operator Mn by the
formula:

Mn = L2 − μn − νny = (s(y)∂y)
2 − μn − νny, (4.1)

where μn, νn are some parameters (not depending on y). Define the space of Sn functions
Qn(y)φ(y), n = 0, 1, . . ., where Qn(y) are arbitrary polynomials of fixed degree n. From
(3.6) it is seen that for generic parameters μn, νn the operator Mn transforms the space Sn into
the space Sn+1. By an appropriate choice of the parameter νn it is possible to achieve a more
strong result:

Theorem 2. Assume that φ(y) belongs to one of cases (i)–(iii). If

νn = τn+1/τn, μn �= σn+1 − τn+1σn

τn

, (4.2)

where τn, σn are the two leading coefficients of the polynomials Tn(y), then the operator Mn

transforms the space Sn into itself.

Proof of this theorem is almost elementary and we omit it.
From this theorem it follows that for appropriate values of the parameter μn the operator

Mn has kernel solutions

Mn{Wn(y)φ(y)} = 0, (4.3)

where Wn(y) are some polynomials of degree n. Indeed, let us present Wn(y) as
Wn(y) = ξnkTk(y). Then relation (4.3) is equivalent to a system of linear equations:

n∑
k=0

ξnk(Tk+1(y) − νnyTk(y)) = μn

n∑
k=0

ξnkTk(y). (4.4)

But (4.4) is an eigenvalue problem in a linear space of dimension n + 1 with basis vectors
T0(y), T1(y), . . . , Tn(y). In this problem, Wn(y) is an eigenvector and μn an eigenvalue. From
linear algebra it is known that at least one eigenvector and corresponding eigenvalue always
exists. Thus the functions Wn(y)φ(y) belong to the kernel of the operator Mn for appropriate
values of μn.

In order to clarify the meaning of the polynomials Wn(y) we return to the variable t. Then,
obviously,

Mn = ∂2
t − μn − νn℘ (t) (4.5)

8
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and the eigenvalue problem for polynomials Wn(y) is now rewritten in the form

∂2
t Wn(℘ (t)) − νn℘ (t)Wn(℘ (t)) = μnWn(℘ (t)). (4.6)

But (4.7) coincides with the Lamé equation [11, 22]. Recall that in one of its forms, the Lamé
equation can be written as

d2�(t)

dt2
− (N(N + 1)℘ (t) + B)� = 0 (4.7)

for some unknown function �(t). The parameter N is usually chosen to be integer whereas B
is the ‘eigenvalue’ parameter.

In our case we have N(N + 1) = νn = τn+1/τn. Using explicit expressions for τn we have

Case (i). N = 2n + 3;
Case (ii). N = 2n + 1;
Case (iii). N = 2n + 2.

In the theory of the Lamé equation it is shown that only for such values of N there exist
polynomial solutions �(t) = Wn(℘(t))φ(t), where φ(t) has expressions (3.22), (3.25) and
(3.19) [11]. Such polynomials Wn(y) are called the Lamé polynomials. (There is also a fourth
case of Lamé polynomials when φ(t) = 1. This corresponds to our case (i) which was seen
to be degenerate in our problem.)

We thus see that the polynomials Tn(y) are intimately connected with the Lamé
polynomials. Moreover, the operator Ln coincides (under appropriate choice of the parameter
νn) with the Lamé operator. The Lamé polynomials Wn(y) coincide with eigenvectors of the
operator Mn. This allows us to propose a method to construct the Lamé polynomials starting
from polynomials Tn(y). Indeed, assume that polynomials T0(y) = 1, T1(y), . . . , Tn(y) are
already explicitly constructed by recurrence relation (3.7). We can then obtain their structure
coefficients ηks in the expansion

yTk(y) = τkν
−1
k Tk+1(y) +

k∑
s=0

ηksTs(y), s = 0, 1, . . . , n.

Then relation (4.4) is reduced to the linear system
n∑

k=0

ξnkζks = μnξns (4.8)

with some explicitly known coefficients ζks . Finding of the coefficients ξnk and μn for the
Lamé polynomials is thus equivalent to solving the ordinary eigenvalue problem (4.8), where
ξnk, k = 0, 1, . . . , n are eigenvectors and μn eigenvalues.

5. Toda chain solutions and corresponding orthogonal polynomials. Case (i)

In this section we construct Toda chain solutions for the class (i), i.e. when

φ(y) = 2
√

(y − e1)(y − e2)(y − e3) = ℘ ′(t).

This means that c0(t) = ℘ ′(t). Thus for all moments we have obviously

cn(t) = ℘(n+1)(t). (5.1)

There is a remarkable Kiepert formula for the corresponding Hankel determinants Dn(t)

[7, 22]:

Dn(t) = (−1)n(1!2! · · · n!)2 σ(t (n + 1))

σ (n+1)2
(t)

, (5.2)
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where σ(t) is the standard sigma-function of Weierstrass [22] related to ℘(t) by

℘(z) = −d2 log σ(z)

dz2
(5.3)

and

℘(z) − ℘(y) = σ(z + y)σ (y − z)

σ 2(z)σ 2(y)
. (5.4)

From (5.4) it follows that

℘ ′(z) = σ(2z)

σ 4(z)
. (5.5)

Recall also that [22]

ζ(z) = d log σ(z)

dz
, (5.6)

where ζ(z) is the Weierstrass zeta function.
It follows that the corresponding orthogonal polynomials Pn(x; t) have the moments

cn(t) = ℘(n+1)(t), n = 0, 1, . . . . (5.7)

Hence the recurrence coefficients of these polynomials should satisfy Toda chain
equations (1.1). Explicitly, these coefficients are easily calculated from (1.18) and (1.10).
We have

hn(t) = Dn+1(t)

Dn(t)
= −(n + 1)!2 σ(t (n + 2))

σ (t (n + 1))
σ (t)−2n−3 (5.8)

whence

un(t) = hn(t)/hn−1(t) = (n + 1)2 σ(t (n + 2))σ (tn)

σ 2(t (n + 1))σ 2(t))

= (n + 1)2(℘ (t) − ℘(t (n + 1))) (5.9)

and

bn(t) = d log(hn(t))

dt
= (n + 2)ζ(t (n + 2)) − (n + 1)ζ(t (n + 1)) − (2n + 3)ζ(t), (5.10)

where we used (5.6).
Although the Toda chain relations (1.1) follow automatically from ansatz (5.7) it is

instructive to verify them directly from the given coefficients un(t), bn(t). It is not difficult to
do so using well-known formulae for the derivatives of the Weierstrass functions σ(z), ζ(z)

Note that u0(t) = 0 from (5.9), so we indeed deal with the restricted Toda chain solutions.
Solution (5.9) and (5.10) correspond to explicit elliptic continued fraction expansion found

in [6]. Corresponding orthogonal polynomials Pn(x; t) cannot have a positive orthogonality
measure on the real axis. Indeed, in order for orthogonal polynomials Pn(x; t) to have such a
measure it is necessary and sufficient that the recurrence coefficients bn(t), un(t) be real and
moreover, that the coefficient un(t) be positive for all n = 1, 2, . . . [5]. Equivalently, this
means that all Hankel determinants Dn(t) should be positive Dn(t) > 0 for all n = 0, 1, 2, . . . .

But formula (5.2) indicates that this condition is impossible for any real value time t. Thus in
this case the polynomials Pn(x; t) can be orthogonal only on some contours in the complex
domain.

10
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6. Toda chain solutions and corresponding orthogonal polynomials: case (ii)

In this section we consider the Toda chain solutions corresponding to case (ii).
In order to calculate the recurrence coefficients un(t), bn(t) for orthogonal polynomials

we need an explicit expression for the determinant

Dn = det
∣∣c(i+k)

0 (t)
∣∣
i,k=0...,n−1, (6.1)

where

c0(t) =
√

℘(t) − e1 = σ1(t)

σ (t)
= e−η1t σ (t + ω1)

σ (ω1)σ (t)
. (6.2)

In (6.2) we exploited a well-known formula for presenting the Weierstrass function in terms
of sigma functions [22]. It will be useful to recall the standard definition of the Weierstrass
sigma functions [22]

σr(t) = e−ηr tσ (t + ωr)

σ (ωr)
, (6.3)

where 2ω1, 2ω2 are fundamental periods of the Weierstrass function ℘(t), ω3 = −ω1 − ω2

and the parameters ηr are defined as

ηr ≡ ζ(ωr), r = 1, 2, 3. (6.4)

There is a fundamental relation between these parameters [22]

η1ω2 − η2ω1 = iπ/2. (6.5)

We need also the following.

Lemma 1. Assume that

c0(t) = σ(wt + q)

σ (wt)σ (q)
exp(μ1t + μ0), (6.6)

where w, q,μ1, μ0 are arbitrary parameters.
Then the Hankel determinant of the type (6.1) is

Dn(t) = κn

σ (nwt + q)

σ (wt)n
2
σ(q)

exp(n(μ1t + μ0)), (6.7)

where

κn = 1!22!2 · · · (n − 1)!2wn(n−1). (6.8)

Proof of this lemma can be obtained either by induction or directly from the determinantal
formula found by Frobenius [2, 8] using a limiting process.

Using lemma 1 we can calculate the Hankel determinant (6.1) constructed from the
moments (6.2):

Dn(t) = 1!22!2 · · · (n − 1)!2 e−η1nt σ (nt + ω1)

σ (t)n
2
σ(ω1)

= 1!22!2 · · · (n − 1)!2 σ1(nt)

σ (t)n
2 . (6.9)

Now we are able to calculate the normalization constants

hn ≡ Dn+1(t)

Dn(t)
= n!2e−η1t

σ ((n + 1)t + ω1)

σ (nt + ω1)σ 2n+1(t)
(6.10)

and the recurrence coefficients

un(t) = hn/hn−1 = n2 sn+1(t)sn−1(t)

s2
n(t)σ

2(t)
= n2(℘ (t) − ℘(nt + ω1)) (6.11)

11
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(where we put for brevity sn(t) ≡ σ(nt + ω1))

bn(t) = ḣn/hn = −η1 + (n + 1)ζ((n + 1)t + ω1) − nζ(nt + ω1) − (2n + 1)ζ(t). (6.12)

Analogously one can obtain similar expressions if one replaces ω1 by ω2 and ω3 (condition
ω1 + ω2 + ω3 = 0 is assumed). Moreover, we can shift the variables t and y by arbitrary
parameters. In order to classify possible choices of the function c0(t) we recall the formula
[22]

℘(t + ωα) = eα +
(eα − eβ)(eα − eγ )

℘ (t) − eα

, (6.13)

where α, β, γ can take the values (1, 2, 3) or (2, 3, 1) or (3, 1, 2). Using this formula we can
arrive at 12 possible expressions for the function c0(t) (up to a constant factor):

c0(t) =
√

℘(t) − eα,
1√

℘(t) − eα

, α = 1, 2, 3 (6.14)

and

c0(t) =
√

℘(t) − eα

℘ (t) − eβ

, α, β = 1, 2, 3, α �= β. (6.15)

Equivalently, c0(t) can be presented in terms of the Jacobi elliptic functions as well, due
to the well-known formulae [22]:√

℘(t) − e3 = ν

sn(νt; k)
,

√
℘(t) − e2 = ν dn(νt; k)

sn(νt; k)
,

√
℘(t) − e1 = ν cn(νt; k)

sn(νt; k)

(6.16)

where

ν = √
e1 − e3, k2 = e2 − e3

e1 − e3
.

Combining these formulae with all 12 choices (6.14) and (6.15) we arrive at 12 possible
Glaisher functions

c0(t) = sn(t), cn(t), dn(t), ns(t), nc(t), nd(t) (6.17)

and

c0(t) = cs(t), sc(t), cd(t), dc(t), sd(t), ds(t). (6.18)

Recall that Glaisher defined [22] his 12 types of the elliptic Jacobi functions in the following
way: ns(t) = 1/sn(t), nc(t) = 1/cn(t), nd(t) = 1/dn(t) and e.g. cd(t) = cn(t)/dn(t) (and
the same rule for other possible combinations). In what follows we will assume that all
parameters ei are real and e1 > e2 > e3. This condition guarantees that 0 < k2 < 1 and that
the period 2ω1 = 2K(k)/

√
e1 − e3 is real and the second period 2ω2 = 2iK ′(k)/

√
e1 − e3

purely imaginary. Thus the fundamental parallelogram in his case is a rectangle [1].
Among the possible 12 choices for the function c0(t) there are two remarkable cases

leading to orthogonal polynomials with a positive discrete measure on the real axis [25].
The first choice is

c0(t) = nc(wt) = 1

cn(wt; k)

with an arbitrary positive real parameter w.

12
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In the admissible interval −K/w < t < K/w we have the orthogonality relation
∞∑

s=−∞
Ms(t)Pn(xs; t)Pm(xs; t) = hn(t)δnm, (6.19)

where the spectral points xs are located on the following uniform grid on the whole real axis:

xn = πw

2K ′ (2n − 1), n = 0,±1,±2, . . . (6.20)

and the corresponding masses are

Mn(t) = π

k′K ′
exp(πwt(n − 1/2)/K ′)

vn−1/2 + v1/2−n
, v = exp(−πK/K ′). (6.21)

The second choice is

c0(t) = dc(wt) = dn(wt; k)

cn(wt; k)
.

In this case the grid is again uniform

xn = πwn

K ′ , n = 0,±1,±2, . . . (6.22)

and the concentrated masses are

Mn(t) = 2π

K ′(vn + v−n)
exp(πwnt/K ′). (6.23)

The admissible interval for t is the same as for the first case (6.19).
In both cases the concentrated masses are positive and the moment problem is determinate

[25]. For a special choice of the time t = 0 we obtain the famous Stieltjes–Carlitz polynomials
connected with elliptic functions [5]. For t �= 0 we have a nontrivial generalization of these
polynomials constructed in [25]. We see that these elliptic polynomials appear naturally as a
special case of the ansatz (3.2).

7. Toda chain solutions and corresponding orthogonal polynomials: case (iii)

Consider the third possibility when

c0(t) =
√

(℘ (t) − e2)(℘ (t) − e3). (7.1)

It is easily seen that the function defined by (7.1) is the derivative of the function
c0(t) = √

℘(t) − e1 corresponding to case (ii) already considered. This means that the
moments cn(t) corresponding to the choice (7.1) are obtained by the simple shift cn → cn+1

from the moments corresponding to the choice (ii) (6.2). In turn, from the observations of
section 2, this shift is seen to be equivalent to the simple Christoffel transform of the orthogonal
polynomials Pn(x; t) corresponding to the choice (ii).

Thus if we denote by P̃ n(x; t) the polynomials corresponding to case (iii) then

P̃ n(x; t) = Pn+1(x; t) − An(t)Pn(x; t)

x
, (7.2)

where

An(t) = Pn+1(0; t)

Pn(0; t)
.

For the corresponding Hankel determinants we have

D̃n = (−1)n+1DnPn(0; t).

Unfortunately, the explicit expression for the value Pn(0; t) is unknown, so this formula does
not give us an explicit (say, in terms of elliptic functions) formula for the Hankel determinant
D̃n. In contrast to cases (i) and (ii), the recurrence coefficients ũn(t), b̃n(t) perhaps do not
have a nice explicit expression too.
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8. Degenerate cases

So far, we have assumed that A(y) in (3.7) is a polynomial of the third degree with distinct
zeros e1, e2, e3. This leads to elliptic solutions of the Stieltjes ansatz (3.2). In this section we
consider briefly the degenerate case. This means that either some zeros ei may coincide with
one another, or A(y) is a polynomial of degree less than 3.

Simple technical details will be omitted and we present final results only.
We first consider the case when the polynomial A(y) is of the third degree with multiple

zeros. If only two zeros coincide then we obtain solutions c0(t) and y(t) which can be expressed
in terms of hyperbolic or trigonometric functions. They correspond to the Krawtchouk,
Meixner and Pollaczek polynomials (see [17] for details).

There are also additional solutions corresponding to the Christoffel transform (2.1) of
these polynomials.

When all three zeros of the polynomial A(y) coincide then we obtain solutions
corresponding to the Laguerre polynomials.

Finally consider the case when the degree of the polynomial A(y) is less than 3. Only
the case deg(A(y)) = 1 is compatible with the Stieltjes ansatz. This leads to solution (up to
an affine transformation of the variable t) c0(t) = exp(t2/4), y(t) = t2 corresponding to the
Hermite polynomials. We have also an additional solution c0(t) = t exp(t2/4) corresponding
to the Christoffel transform (2.1) of the Hermite polynomials.

All these solutions (apart from additional solutions corresponding to Christoffel
transforms) correspond to the case when the Stieltjes ansatz can be reduced to ansatz (3.1). As
was shown in [17] this ansatz corresponds to the orthogonal polynomials of the Sheffer class.

Let us consider a simple example connected with so-called derivative polynomials for
tangent and secant [10]. It is well known that

dn

dtn
sec t = Qn(tan t) sec t, (8.1)

where Qn(z) are n-degree polynomials in z called the derivative polynomials for secant [10].
As was demonstrated in [10] these derivative polynomials appear in the expression for an
improper integral∫ ∞

−∞

xn eax

ex + 1
dx = πn+1 csc aπQn(−cot aπ), n = 0, 1, 2, . . . (8.2)

where 0 < a < 1.
We can interpret this result in terms of corresponding orthogonal polynomials with

moments satisfying the Stieltjes ansatz. Indeed, formula (8.1) can be specialized for the
even n as

d2n

dt2n
sec t = Tn(tan2 t) sec t, (8.3)

where Tn(z
2) = Q2n(z) (indeed, it is easy to verify that polynomials Q2n(z) contain only even

degrees of z). Thus we have a special case of the Stieltjes ansatz (3.1) with c0(t) = sec t and
y(t) = tan2 t . From (3.8) we have

A(y) = ẏ2 = 4y(1 + y)2, B(y) = 2(y + 1)(5y + 1), C(y) = 2y + 1

which corresponds to a degenerate case (polynomial A(y) has a double zero).
Take c0 = sec t and b0 = ċ0/c0 = tan t, u0 = 0. Then we can apply the Toda chain

equations (1.1) to obtain step-by-step u1 = ḃ0 = sec2 t, b1 = b0 + u̇1/u1 = 3 tan t, . . . . By
induction, it is elementary verified that for any n � 0 we have

un = n2 sec2 t, bn = (2n + 1) tan t. (8.4)

14



J. Phys. A: Math. Theor. 42 (2009) 454024 L Vinet and A Zhedanov

Corresponding orthogonal polynomials Pn(x; t) belong to a special case of the Meixner–
Pollaczek polynomials. Indeed, the Meixner–Pollaczeck polynomials depend on two
parameters λ, φ and have the recurrence coefficients [14]

un = n(n + 2λ − 1)

4 sin2 φ
, bn = −n + λ

tan φ
. (8.5)

They are orthogonal on the whole real axis with respect to the weight function

w(x) = e(2φ−π)x |�(λ + ix)|2. (8.6)

If one puts λ = 1/2 and φ = π/2 + t we obtain that recurrence coefficients (8.4) coincide with
(8.5) (up to a scaling factor). The weight function (8.6) then becomes

w(x; t) = e2tx

cosh πx

and formula (8.2) can be interpreted as explicit expression of the moments cn(t) in terms of
the polynomials Qn(y).

This example can be generalized if one takes c0(t) = seca t with an arbitrary positive
parameter a. It is easily verified that the Stieltjes ansatz (3.2) holds with

A(y) = 4y(1 + y)2, B(y) = 2(1 + y)(1 + (2a + 3)y), C(y) = a(1 + (a + 1)y).

Constructing corresponding Toda chain solutions we obtain by induction

un = n(n + a − 1) sec2 t, bn = (2n + a) tan t (8.7)

These recurrence coefficients correspond to generic Meixnner–Pollaczek polynomials with
λ = a/2, φ = π/2 + t .

In fact, Stieltjes himself considered this example in details in his work [19].
If one chooses c0(t) = sin t seca t (this corresponds to the shift c0 → c1 with an

obvious shift of the parameter a) then we obtain Christoffel transformed Meixner–Pollaczek
polynomials (2.1). In general their recurrence coefficients un(t), bn(t) will not have simple
elementary expressions.

One can replace trigonometric functions with hyperbolic ones, say c0(t) = coshN t,N =
1, 2, . . . with y(t) = tanh2 t . This choice corresponds to the Krawtchouk polynomials. Indeed
corresponding Toda chain solution is

un = n(n − N + 1)

cosh2 t
, bn = (n − 2N) tanh t, (8.8)

which coincides with recurrence coefficients for the Krawtchouk polynomials [14], whereas the
additional solution c0(t) = sinh t coshN t corresponds to Christoffel transformed Krawtchouk
polynomials (2.1).
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